HDF5-UDF

Release 2.1

Lucas C. Villa Real

Mar 20, 2023

1 Installation
2 Getting started

3 The lib interface for UDF writers

CONTENTS:

4 UDF compilation and storage interfaces

4.1 Command-lineinterface e e e
4.2 Pythoninterface L e e e e e e e e
4.3 JSON schema for HDF5-UDF datasets o i v i i it e e e e e e e e

5 Security considerations

5.1 Sandboxingo L e e e e
52 Trustprofiles e e
5.3 Signing UDFs o . o e e e e e e e e e e
5.4 Associating UDFs with atrustprofile

6 Configuration

6.1 Allowing systemcalls

6.2 Access to files and directories
7 Indices and tables
Python Module Index

Index

11
11
12
14

15
15
15
16
16

17
17
18

19

21

23

HDF5-UDF, Release 2.1

HDF5-UDF is a mechanism to generate HDF5 dataset values on-the-fly using user-defined functions (UDFs). The
platform supports UDFs written in Python, C++, and Lua under Linux, macOS, and Windows.

This page provides documentation for UDF writers and for those wishing to programmatically compile and store UDFs
through HDF5-UDF’s C and Python APIs.

[HDF5 Application]

Read I Write Readl "Write "Write "Write
—

C/C++ Code Lua Code \ Python Code

A A

Y - \

[Regular Dataset | [UDF Dataset] [GCC] [LuaIT
-

CPython

A

\/ -

[Bytecode J

[UDF Handler]4—-[Shared LibraryJ [Bytecode

1 [LuaJIT VM

)
: |
)

)

CPython VM]

C/C++ backend Lua backend Python backend

CONTENTS: 1

HDF5-UDF, Release 2.1

2 CONTENTS:

CHAPTER
ONE

INSTALLATION

Please refer to the project page on GitHub for up-to-date instructions on how to install the HDF5-UDF library and its
utilities from binary packages or in source code form.

Once the main library has been installed on your system, PIP installs the Python APIs needed to programmatically
compile and attach UDFs to HDFS5 files:

pip install pyhdf5-udf

https://github.com/lucasvr/hdf5-udf/blob/master/INSTALL.md

HDF5-UDF, Release 2.1

4 Chapter 1. Installation

CHAPTER
TWO

GETTING STARTED

We begin by writing the function that we will compile and store on HDF5. In the example below, the dataset will be
named “simple”. Note the calls to 1ib.getData() and 1lib.getDims(): they are part of HDF5-UDF runtime and
provide direct access to the dataset buffer and its dimensions, respectively. See The [ib interface for UDF writers for
details on that interface. The entry point of the UDF is always a function named dynamic_dataset.

from hdf5_udf import UserDefinedFunction

def dynamic_dataset():
from math import sin
data = lib.getData('simple')
dims = lib.getDims('simple')
for i in range(dims[0]):
data[i] = sin(i)

Now, we use the inspect module to capture the function’s source code and save it as a file on disk. HDF5-UDF
recognizes files ending on .py, .cpp, and .1lua.

import inspect
with open("/tmp/udf.py", "w") as f:
f.write(inspect.getsource(dynamic_dataset))

Last, we declare a UserDefinedFunction object and describe the dataset: its name, type, and dimensions. Next, we
compile it into a bytecode form and store it in the provided HDFS5 file.

with UserDefinedFunction(hdf5_file='/path/to/file.h5"', udf_file="/tmp/udf.py') as udf:
udf.push_dataset({'name': 'simple', 'datatype': 'float', 'resolution': [1000]})
udf.compile()
udf.store()

At this point the dataset has been created and it’s possible to retrieve its data. Note that the call to £['simple'][:]
triggers the execution of the bytecode we just compiled. There’s more to the picture than meets the eye!

import hS5py
f = h5py.File('/path/to/file.h5")
simple = f['simple][:]

f.close()

HDF5-UDF, Release 2.1

6 Chapter 2. Getting started

CHAPTER
THREE

THE LIB INTERFACE FOR UDF WRITERS

HDF5-UDF comes with a few primary interfaces and helper methods to ease storing and retrieving values of string-
based datasets. It is not necessary to explicitly instantiate a PythonLib object: you can simply use the 1ib one provided
by HDF5-UDF as seen in the examples below.

class udf_template.PythonLib
Interfaces between User-Defined Functions and the HDF5 API.

getFilePath()
Retrieve the path to the input HDF5 file.

string (structure)
Retrieve the value of a HDF5 string datatype.

Parameters
structure (obj) — Object holding the string element to be retrieved

Examples

Print the i-th member of a string datatype

print(lib.string(item[i], flush=True))

Returns
The string element (decoded from UTF-8)

Return type

str

setString(structure, s)
Set the value of a HDFS5 string datatype.

Write the given string to the provided object. No encoding assumptions are made; the application is ex-
pected to encode() the given string. This function does boundary checks to prevent buffer overflows.

Parameters
* structure (obj) — String object whose value is to be set

* s (str)— String value to write to the given object

HDF5-UDF, Release 2.1

Examples

Write to the i-th member of a string datatype

lib.setString(item[i], "Too much monkey business".encode("utf-8"))

Write a string to a compound member ‘album’

lib.setString(item[i].album, "Electric Ladyland".encode("utf-8"))

getData(name)
Get a data pointer to the given dataset.

This method fetches the given dataset name from the HDFS5 file and loads it into memory. If the given name
refers to a dataset that the UDF uses as input, the returned object holds the contents (values) of that dataset.
Otherwise, if the given name is the output dataset being programmatically generated by the function, then
the returned object is theh actual buffer which the user-defined function needs to populate.

Parameters
name (str) — Dataset name

Examples

Retrieve pointers to the input and output dataset, then copy the first 100 elements of the input dataset to
the output. Note that start and end indexes must always be provided when reading or writing data to data
retrieved by this API.

input_ds = lib.getData("input_dataset")
output_ds = lib.getData("output_dataset™)
input_ds[0:100] = output_ds[0:100]

Returns
Data pointer to the requested dataset

Return type
obj

getType (name)
Get the data type of the given dataset.

Parameters
name (str) — Dataset name

Returns
The corresponding data type name. The following is a list of possible values returned by
this function: “int8”, “int16”, “int32”, “int64”, “uint8”, “uint16”, “uint32”, “uint64”, “float”,
“double”, “compound”, and “string”.

Return type
str

getDims (name)
Get the dimensions of the given dataset.

Parameters
name (str) — Dataset name

8 Chapter 3. The lib interface for UDF writers

HDF5-UDF, Release 2.1

Returns
A list of integers containing the size of each dimension of the given dataset.

Return type
list

HDF5-UDF, Release 2.1

10 Chapter 3. The lib interface for UDF writers

CHAPTER
FOUR

UDF COMPILATION AND STORAGE INTERFACES

User-defined functions can be compiled and stored in HDF5 from the command-line or from HDF5-UDF’s APIs. To
date, the project provides a low-level C API and a Python abstraction of that API, documented below.

4.1 Command-line interface

Given an UDF file with a supported backend (C++, Python, or Lua) and a target HDFS file, the hdf5-udf utility can
be used to compile and store the UDF on that file.

Syntax: hdf5-udf [flags] <hdf5_file> <udf_file> [udf_dataset..]

Flags:
--overwrite Overwrite existing UDF dataset(s)
--save-sourcecode Include source code as metadata of the UDF

When populating values for a dataset with a native data type, the following syntax applies to describe that dataset:

name:resolution:type

where:
¢ name: name of the UDF dataset

e resolution: dataset resolution, with dimensions separated by the x character. = Examples: XSize,
XSize "x "YSize,XSize "x "YSize 'x "ZSize

e type: [ulint8, [u]lintl6, [ulint32, [u]lint64, float, double, string, or string(NN). If unset, strings
have a fixed size of 32 characters.

When populating values for a dataset with a compound data type, the following syntax is used instead:

name : {member: type[,member:type...]}:resolution

11

https://github.com/lucasvr/hdf5-udf/blob/default/src/hdf5-udf.h

HDF5-UDF, Release 2.1

4.2 Python interface

It is also possible to bypass the command line and embed the instructions to compile and store the UDF in a HDFS file
using HDF5-UDF’s Python API. This API is an abstraction of the low-level C API.

class hdf5_udf.UserDefinedFunction(idf5_file=", udf file="")
Store a user-defined function on a HDFS file.

Parameters
e hdf5_file (str) — Path to existing HDFS5 file (required)
» udf_ file (str) - Path to file implementing the user-defined function (optional)
set_option(option=", value="")
Set an option given by a key/value pair.
Parameters
¢ option (str)— Name of the option to configure. Recognized option names include:
— “overwrite”: Overwrite existing UDF dataset? (default: False)
— ”save_sourcecode”: Save the source code as metadata? (default: False)
¢ value (str, bool) - Value to set option to.

Raises
TypeError — If the given data type is not recognized

Returns
True if successful, False otherwise.

Return type
bool

push_dataset (description)
Define a new UserDefinedFunction dataset.

Parameters
description (dict) — Describe the dataset: its name, data type, size, and members (if a
compound data type). For native datasets the following keys are expected: name, datatype,
resolution.

Compound datasets must provide an extra members key. Objects of the members array must
include two properties: name and datatype.

Examples

Dataset with a native data type:

{"name": "MyDataset", "datatype": "int32", "resolution": [100,100]}

Dataset with a compound data type: .. code-block:

{
"name": "MyCompoundDataset",
"datatype": "compound",
"resolution": 100,

(continues on next page)

12 Chapter 4. UDF compilation and storage interfaces

https://github.com/lucasvr/hdf5-udf/blob/default/src/hdf5-udf.h

HDF5-UDF, Release 2.1

(continued from previous page)

"members": [
{"name": "Identifier", "datatype": "int64"},
{"name": "Description", "datatype": "string(80)"}
]
}
Raises
» TypeError — If description or its members hold an unexpected data type
e ValueError - If description dictionary misses mandatory keys
Returns
True if successful, False otherwise.
Return type
bool
compile()

Compile the UserDefinedFunction into bytecode form.

Returns
True if successful, False otherwise

Return type
bool
store()
Store the compiled bytecode on the HDFS file.
Returns

A dictionary with the metadata written to the HDF5 file, on success. On failure, returns a
dictionary with an error member and an associated string with a description of that error.

Return type
dict
get_metadata(dataset)
Retrieve metadata of an existing UDF dataset.
Returns
A dictionary with the UDF metadata: its name, the backend needed to execute it, the bytecode

size, the dataset resolution, data type, and other relevant information. On failure, returns a
dictionary with an error member and an associated string with a description of that error.

Return type
dict
destroy()
Release resources allocated for the object.

This function must be called to ensure handles are closed and avoid resource leaks. It is best, however, to
use simply use a context manager to define UserDefinedFunction objects:

with UserDefinedFunction(hdf5_file="file.h5', udf_file="udf.py') as udf:
udf.push_dataset(...)
udf.compile()
udf.store()

4.2,

Python interface 13

HDF5-UDF, Release 2.1

4.3 JSON schema for HDF5-UDF datasets

The dictionary used to describe the UDF dataset(s) must follow the schema below.

Schema
type object
properties
* name Dataset name
type string
* datatype Data type
type string
enum int8, uint8, int16, uint16, int32, uint32, int64, uint64, float, double,
string, compound
* resolution Dataset dimensions
type array
items type number
exclusiveMinimum | O
minltems 1
* members Compound members
type array
items type object
properties
* name Compound member name
type \ string
* datatype Compound member data type
type string
enum int8, uint8, intl6,
uint16, int32,
uint32, int64,
uint64, float, dou-
ble, string
minltems 1

14 Chapter 4. UDF compilation and storage interfaces

CHAPTER
FIVE

SECURITY CONSIDERATIONS

Trusting user-defined functions to execute arbitrary code on someone else’s computer is always hard. All is fine until
some malicious piece of code decides to explore the filesystem and mess around with system resources and sensitive
data. This is such an important topic that several projects delegate dedicated teams to reduce the attack surface of
components that execute code from external parties.

Because users cannot tell in advance what a certain user-defined function is about to do, HDF5-UDF uses a few mech-
anisms to limit what system calls the UDF can execute.

5.1 Sandboxing

The Linux implementation uses the Seccomp interface to determine which system calls UDFs are allowed to invoke —
the UDF process is terminated if it tries to run a function that does not belong to the allow-list. The following image
shows the overall architecture of our seccomp-based sandboxing.

fork() _| Configure Execute UDF | ¢yit()
............... sandbox over shm
Load UDF Prepare Setup shared A[Transfer results from
dependencies "lib" data memory (shm wait() lshm to output dataset
Note that even though one could use a static list of system calls allowed to execute, that does not reflect real-world

scenarios in which few people are trusted (and thus should be OK to have access to a larger set of system calls than
ordinary users). We account for that situation by introducing the concept of Trust profiles.

5.2 Trust profiles

Starting with HDF5-UDF 2.0, a private and public key pair is automatically generated and saved to the user’s home
directory (under ~/.config/hdf5-udf) the first time a dataset is created. The files are named after the currently
logged user name:

e ~/.config/hdf5-udf/username.priv private key

e ~/.config/hdf5-udf/username.pub: public information: public key, email, and full name. The last two
pieces of information are automatically assembled from hostname and /etc/passwd. Please review and adjust
the file as you see fit

A directory structure providing different trust profiles is also created. Inside each profile directory exists a JSON file
which states the system calls allowed to be executed by members of that profile. Three profiles are created:

* deny: strict settings that allow writing to stdout and stderr, memory allocation, and basic process manage-
ment (so the process can exit()).

15

HDF5-UDF, Release 2.1

¢ default: a sane configuration that allows memory allocation, opening files in read-only mode, writing to stdout
and stderr, and interfacing with the terminal device.

* allow: poses no restrictions. The UDF is treated as a regular process with no special requirements.

The profile configuration files also state which filesystem paths can be accessed by UDFs. An attempt to access a
filesystem object not covered in the config file causes the UDF to be terminated with SIGKILL.

5.3 Signing UDFs

UDFs are automatically signed at the time of their attachment to the HDFS file. The public key from username . pub
and contact information from username.meta are incorporated as metadata and saved next to the UDF bytecode in
the HDFS file.

5.4 Associating UDFs with a trust profile

Self-signed UDFs are automatically placed on the allow profile. This means that UDFs you create on your own
machine will run, on that same machine, as a regular process would.

HDFS5 files with UDFs signed by a different user are automatically placed on the deny profile: the public key is extracted
from the metadata and saved as ~/.config/hdf5-udf/deny/foo.pub. In other words, when you receive a file from
an unknown party and load a UDF dataset, the bytecode will not be able to perform any actions that require the execution
of system calls (other than writing to stdout and stderr).

It is possible to change the trust level by simply moving that public key to a different profile directory. The next
time a UDF signed by that key is read, the seccomp rules associated with that profile will be enforced.

(N\ N\ ™
Key
! Keyg
Key,
Keyo
Key;
\ J J U J
Untrusted profile Default profile _
deny all brk() allow all

exit_group()
gettimeofday()

16 Chapter 5. Security considerations

CHAPTER
SIX

CONFIGURATION

Configuration of trust profiles is made by adjusting the JSON files under the corresponding trust directory:

e ~/.config/hdf5-udf/deny/deny. json: UDFs signed by previously unseen keys are associated with this
profile.

e ~/.config/hdf5-udf/deny/default. json: settings for reasonably trusted keys
e ~/.config/hdf5-udf/deny/allow. json: settings for UDFs signed by trusted keys
The JSON file comprises the following keys:

* "sandbox" (boolean): set to false if you don’t want to enforce a sandbox to UDFs associated with this profile,
true otherwise.

* "syscalls": array of key-value objects describing the system call names and the conditions to allow UDFs to
run them.

e "filesystem": array of key-value objects describing the paths an UDF can access on the filesystem.

6.1 Allowing system calls

By default, all system calls are disallowed from being called by an UDF. The "syscalls" JSON array must explicitly
state each system call a UDF can call. There are two syntaxes to state so:

1. Allow a named system call to execute regardless of the arguments provided by the user:

{"syscall_name": true}

2. Allow a named system call to execute as long as the arguments match a given criteria. Examples:

A rule for write(int fd, const void *buf, size_t count)

{
"write": {
"arg": O, # First syscall argument (fd) ...
"op": "equals", # ... must be equal to ...
"value": 1 # ... 1 (stdout)
}
}
A rule for open(const char *pathname, int flags)
{
"open": {
"arg": 1, # Second syscall argument (flags) ...

(continues on next page)

17

HDF5-UDF, Release 2.1

(continued from previous page)

"op": "masked_equals", # ... when applied to bitmask ...
"mask": "O_ACCMODE", # ... O_ACCMODE ...
"value": "O_RDONLY" # ... must be equal to O_RDONLY
}
3

Mnemonic values such as "O_RDONLY" are automatically translated into their numerical representation. They must be
quoted as JSON strings.

Currently the two only possible values for op are equals and masked_equals.

String-based filtering is not supported. Selection of which filesystem paths a registered system call can access, however,
is possible by setting the "filesystem" array. See the next section for details.

6.2 Access to files and directories

By default, access to any filesystem object is denied. The "filesystem" array can be used to state which parts of the
filesystem can be accessed and if they’re available for programs opening objects in write mode or not.

The filesystem path component can be an absolute path or a string containing wildcards (*). Two consecutive wildcards
(**) can be used to recurse into subdirectories. The supported open modes are ro for read-only access and rw for both
write-only and read-write requests.

Here are some examples. More settings can be found on the files shipped with HDF5-UDF (e.g., ~/.config/
hdf5-udf/default/default. json).

To allow access to any file, as long as the requested operation is read-only:

"filesystem": [
{"/%%; "ro}
]

To allow access to Python packages:

"filesystem": [
{"/**/python*/site-packages/**":

ro"}

]

To allow write access to /tmp:

"filesystem": [
{u/tmp/**u: nrwu}
]

18 Chapter 6. Configuration

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
* modindex

¢ search

19

HDF5-UDF, Release 2.1

20

Chapter 7. Indices and tables

h

hdf5_udf, 12

u
udf_template, 7

PYTHON MODULE INDEX

21

HDF5-UDF, Release 2.1

22

Python Module Index

C
compile() (hdf5_udf.UserDefinedFunction method), 13
D
destroy () (hdf5_udf.UserDefinedFunction method), 13
G
get_metadata() (hdf5_udf.UserDefinedFunction

method), 13
getData () (udf _template. PythonLib method), 8
getDims) (udf_template.PythonLib method), 8
getFilePath() (udf_template.PythonLib method), 7
getType () (udf_template.PythonLib method), 8

H

hdf5_udf
module, 12

M

module
hdf5_udf, 12
udf_template, 7

P

push_dataset() (hdf5_udf.UserDefinedFunction
method), 12
PythonLib (class in udf_template), 7

S

set_option() (hdf5_udf.UserDefinedFunction method),
12

setString () (udf_template.PythonLib method), 7

store() (hdf5_udf.UserDefinedFunction method), 13

string () (udf_template. PythonLib method), 7

U

udf_template
module, 7
UserDefinedFunction (class in hdf5_udf), 12

INDEX

23

	Installation
	Getting started
	The lib interface for UDF writers
	UDF compilation and storage interfaces
	Command-line interface
	Python interface
	JSON schema for HDF5-UDF datasets

	Security considerations
	Sandboxing
	Trust profiles
	Signing UDFs
	Associating UDFs with a trust profile

	Configuration
	Allowing system calls
	Access to files and directories

	Indices and tables
	Python Module Index
	Index

